Deep Learning Training on Distributed Embedded Systems

Sihyeong Park, Jemin Lee, Hyungshin Kim
Chungnam National University
Introduction

• Deep Learning
 • Machine learning based on multi-layer artificial neural network
 • Largely divided into two: Training, Inference

• Excellent performance of Deep Learning
 • Computer vision, natural language processing, speech recognition, self-driving car, etc.
Introduction

• **Training**
 • Generate a model with input data
 • Consists of repeatedly calculating multi-layer
 • Typically executed on a high-performance distributed system that supports multiple GPUs

• **Inference**
 • Perform for certain tasks such as object detection

• **Embedded System has limited resource**
 • Existing studies are not considered full-training on embedded systems without cloud offloading
Introduction

• Smart Home Systems
 • Diffusion of Internet-of-Things (IoT)
 • Many home appliances are applying deep learning
 • High-performance CPU like quad-core is used for appliances
 • Make easier to implement a distributed processing system using embedded systems

• Risk of personal information leakage
 • Devices collect data from their sensors and then send them to servers for training
 • Smart home systems incorporate an amount of sensitive information
Proposal

• Distributed Deep Learning using Smart Home System
 • In-Home local training, without server
 • Online learning about change of environment such as change of furniture layout and change of living pattern of people
 • Privacy protection possible
 • Reduced server usage costs
Experiment Environment

• Distributed Deep Learning framework
 • MXNet
 • Provides data and model parallel processing
 • Mobile devices to multi-GPU, multi-Devices
 • Distributed key-value storage based on parameter servers for synchronization

• Distributed computing
 • Raspberry Pi 3 Model B: 1~11
 • Connected with 100 Mbps LAN switch
Experiment Environment

- **MNIST dataset**
 - Handwritten image of 0-9
 - 60,000 32x32 size images

- **LeNet-5**
 - 3 Convolution layers
 - 2 sub-sampling layers
 - 1 fully-connected layer
Experiment Result

- **Layer size**: 64
- **Learning rate**: 0.05
- **Number of epochs**: 10

![Graphs showing time costs and training/validation accuracy](image_url)
Conclusion and Future Works

• Trained LeNet model in distributed embedded system and measured execution time and accuracy for a handwritten dataset

• Using a larger model and a heterogeneous embedded system
 • LesNet, AlexNet, etc.

• Using Wi-Fi to distributed computing