Optimizing Real-Time Object Detection in a Multi NPU System with Double
Buffering and Queue-Based Processing

Sehyeon Oh
University of Science and Technology

Yongin Kwon

Electronics and Telecommunications Research Institute

Jemin Lee”
Electronics and Telecommunications Research Institute

Abstract

Real-time object detection demands high throughput and
low latency, necessitating the use of hardware accelerators. In
this paper, we construct a real-time object detection system
based on YOLOV3 utilizing Neubla’s Antara NPU and pro-
pose two approaches for performance optimization. First, we
ensure the continuity of NPU inference by allowing the CPU
to perform preprocessing in advance through double buffer-
ing. Second, in a multi-NPU environment, we distribute tasks
among NPUs through queue-based processing and analyze
the performance limits using Amdahl’s law. Experimental re-
sults demonstrate that compared to a CPU-only environment,
applying the NPU in single buffering improved throughput
by 2.13 times, double buffering by 3.35 times, and in a multi-
NPU environment by 4.81 times. Latency decreased by 1.6
times in single and double buffering, and by 1.18 times in the
multi-NPU environment. The accuracy remained consistent,
with 31.4 mAP on the CPU and 31.8 mAP on the NPU.

1 Introduction

Recent advancements in artificial intelligence have increased
demand for real-time video analysis and object detection ap-
plications [1,2]. However, as deep learning models become
more complex, traditional CPU or GPU-based systems strug-
gle to meet real-time processing requirements [3]. To address
these challenges, specialized hardware accelerators, such as
Google’s TPU [4], NVIDIA’s Tensor Core [5], and Intel’s
Nervana NNP [6] have been developed. These accelerators
enhance computational performance and energy efficiency
through specialized architectures. NPUs, offering excellent
energy efficiency and processing speed, play a crucial role in
high-performance deep learning applications [7, 8].
However, in real-time object detection systems, effectively
utilizing the NPU requires cooperation and task synchroniza-
tion with the CPU. These systems typically follow sequential

*Corresponding Author: leejaymin @etri.re.kr

stages of preprocessing, inference, and postprocessing. Dur-
ing preprocessing, the input data is transformed, followed by
the NPU performing inference, and finally, the results are in-
terpreted in the postprocessing stage. However, frequent data
transmission and synchronization between the CPU and NPU
can lead to performance bottlenecks. In particular, if each
processor must wait for the other to complete its task before
proceeding, latency increases, and system resources remain
idle. This issue can reduce the overall system throughput and
make it difficult to achieve real-time performance.

In this paper, to address these challenges, we propose a
real-time object detection system based on YOLOv3 utiliz-
ing Neubla’s Antara NPU, with performance optimization
achieved through a double buffering technique and a queue-
based processing scheme for multi-NPU environments. The
double buffering technique mitigates data processing bottle-
necks by allowing the NPU to continue inference while the
CPU performs preprocessing, alternating between two buffers.
This enables parallel task execution between the CPU and
NPU, maximizing system performance. The queue-based pro-
cessing scheme uses input and output queues to distribute
tasks evenly across NPUs in a multi-NPU environment. The
CPU preprocesses images captured from the camera and
stores them in the input queue, from which the NPUs re-
trieve data and perform inference. The inference results are
then stored in the output queue, where the CPU processes and
visualizes them. This approach reduces waiting times between
the CPU and NPU and significantly improves throughput in
multi-NPU environments.

The experimental results showed that, compared to a CPU-
only system, the Antara NPU system with single buffering
achieved approximately 2 times higher throughput, while the
double buffering system achieved about 3.4 times higher
throughput. Latency in both single and double buffering sys-
tems was reduced by approximately 1.6 times compared to the
CPU. In a multi-NPU environment, adding NPUs increased
throughput by about 4.6 times compared to the CPU-only
system; however, performance did not increase linearly due
to CPU resource limitations. Additionally, inference using

quantized models on the NPU maintained stable accuracy,
with a slight increase from 31.4 to 31.8 mAP.

2 Architecture and Execution Flow of Antara
NPU

We utilize the Antara NPU, developed by Neubla [9] in South
Korea. This hardware accelerator is optimized for real-time
deep learning applications such as image classification, object
detection, and super-resolution. It is designed to deliver high
computational performance and efficient memory utilization.
The Antara NPU features a 32x48 MAC array, supporting
Int8/FP8 data types, and achieves 6 TOPS of computational
power with 1.5MB of on-chip SRAM to maximize bandwidth
efficiency between computation and memory. Additionally,
its 3,000 MAC units provide fast and accurate inference per-
formance. The specifications are summarized in Table 1.

Table 1: Neubla’s HW Specifications.

Feature Specification
Performance 6 TOPS
Embedded SRAM 1.SMB
of MACs 3K (1.5K x 2)
TX Engine 32 x 48 MAC array
Data Type Int-8 or FP-8

As shown in Figure 1, the internal architecture of the An-
tara NPU consists of Neural Engines, shared SRAM, a DMA
engine, and DRAM. Data is transferred from the host system
to the DRAM on the Antara board via the PCle interface,
enabling the real-time processing of large-scale data. Addi-
tionally, the shared SRAM allows for efficient data exchange
between the Neural Engines and the DMA engine, optimizing
memory bandwidth efficiency. This architecture minimizes
latency while providing the high throughput required for real-
time applications, ensuring that the Antara NPU delivers the
performance necessary for high-performance real-time deep
learning applications.

(pram (OO0,][PCle |

| Ty Controller

7 Y
v

—

Shared SRAM

Neural
Engine

o

Figure 1: Neubla’s Antara NPU Architecture

DMA Engine

As shown in Figure 2, The software stack includes a dedi-
cated compiler that partitions the workload between the CPU
and the NPU, enabling the execution of deep learning models
on the Antara NPU. This compiler analyzes the model to di-
vide it into parts that run on the CPU and the NPU, generating
target binary files for the NPU execution. During this process,
the CPU still handles preprocessing and postprocessing tasks,
making efficient scheduling at the application level critical
for coordinating tasks between the CPU and NPU. Our ap-
proach focuses on optimizing this scheduling to minimize idle
time between CPU and NPU operations, thereby maximiz-
ing throughput. Further details on the pipeline optimization
techniques are provided in the subsequent sections.

-
Compiler
ONNX IR \.
) (
Compiler PClIe
Frontend Driver
\.
Compiler s -
Backend
Application =@

J

Figure 2: Neubla’s Antara NPU Software Stack

3 Best Practices for Efficient Object Detection
on Antara NPU

To maximize the performance of real-time object detection
systems, we conducted a thorough analysis and optimization
of three key computational stages: preprocessing, inference,
and postprocessing. In a typical processing flow, the CPU
preprocesses input images before sending them to the NPU
for inference, and then handles postprocessing of the results
to provide the final output. In the initial implementation, a
single-buffering approach was used to sequentially execute
tasks between the NPU and CPU. As shown in Figure 3 (a),
the CPU completes preprocessing before sending data to the
NPU, and once the NPU finishes inference, the CPU performs
postprocessing. However, in this approach, if the CPU does
not prepare the next input data before the NPU completes
its inference, the NPU remains idle, potentially creating per-
formance bottlenecks. This reduces system throughput and
prevents the NPU from being fully utilized.

To address this performance bottleneck, a double-buffering
technique was introduced to enable parallel processing be-
tween the CPU and NPU. This approach alternates between
two buffers: while the CPU preprocesses input data in one
buffer, the NPU performs inference on the data in the other
buffer. This allows both the CPU and NPU to operate simulta-
neously, minimizing NPU idle time and significantly improv-

ing system processing speed. Particularly, in time-sensitive
applications such as real-time object detection, this method
reduces latency and contributes to performance optimization.
As shown in Figure 3 (b), double buffering maximizes re-
source utilization and effectively increases throughput.

Pre Post Pre
CPU Task Process Process
NPU Task r— ------ [Inference] -------------- [:|
(a) Single Buffering
Pre Pre Post Pre
CPU Task Process I Process] Process
NPU Task r— ------ [Inference I Inference]
(b) Double Buffering

Figure 3: Single buffering with sequential operation and dou-
ble buffering for parallel processing, where the timing dif-
ferences between CPU and NPU tasks in each method are
presented.

To achieve performance scaling in a multi-NPU environ-
ment, we implemented a queue-based processing strategy, as
shown in figure 4. The CPU captures images from the camera
in real-time and stores them in the input queue. Subsequently,
the CPU handles preprocessing and postprocessing, while the
NPU performs inference. These three stages are combined
into a single task for each image until processing is complete.
Each task retrieves data from the input queue, processes it,
and stores the final output in the output queue, after which
the CPU visualizes the results. This queue-based approach
efficiently distributes the workload across the NPUs, max-
imizing the utilization of system resources. As each NPU
processes data independently, increasing the number of NPUs
can lead to an increase in system throughput. However, this
performance gain becomes limited as the number of NPUs in-
creases, due to constraints on system resources such as CPU,
memory bandwidth, and I/O. Therefore, while the system can
scale efficiently up to a certain point, it is important to recog-
nize that performance may not improve proportionally with
the addition of more NPUs [10].

Pre Inferen Post
| LProcess erence Process J | ™
Input Output
Queue Queue
~ [l Pre l l Inference l l Post l] -
Process Process
Figure 4: Data Distribution through Input and Output Queues

in a Multi-NPU System.

4 Experiment

4.1 Environment Setup

To quantitatively evaluate the performance of a real-time ob-
ject detection system and compare the performance differ-
ences across various hardware configurations, we designed
experiments using an Intel Core 17-12700 CPU, an NVIDIA
GeForce GTX 1060 6GB GPU, and a Neubla Antara NPU.
The experiments were conducted based on the YOLOv3
608 x 608 model, which was utilized in its uint8 quantized
version. Input data was provided in real time via a Logitech
Brio 4K Pro camera, and all software was configured to run
in a consistent environment to ensure the reliability of the ex-
periments. The operating system used was Ubuntu 22.04, and
inference on the CPU and GPU was performed using ONNX
Runtime 1.12.1. For the GPU, inference was executed in an
environment with CUDA 11.8 and cuDNN 8.9. For the NPU,
inference was conducted using binaries generated through the
Neubla compiler.

FPS:_37.25, MA(100): 38.38 f

Figure 5: Four-stage execution flow: (1) Data acquisition
and preprocessing, (2) Inference, (3) Postprocessing, and (4)
Real-time result output with object detection and performance
metrics.

The overall execution flow is shown in Figure 5. This flow
consists of four stages: @) Data Acquisition and Prepro-
cessing, where real-time video data is collected from the
camera, and the CPU performs preprocessing steps such as

image resizing and data normalization. @ Inference, during
which the preprocessed data is sent to the NPU or GPU for
inference using the deep learning model. € Postprocess-
ing, in which the inference results are returned to the CPU,
where tasks such as drawing bounding boxes around detected
objects and organizing class information are performed. @
Result Output, where the postprocessed results are displayed
on the screen in real-time, with detected objects indicated by
bounding boxes and performance metrics such as Frames Per
Second (FPS) provided.

For performance evaluation, we measured the mean Av-
erage Precision (mAP) using the COCO 2017 validation
dataset [11]. In addition, we assessed throughput (FPS) and
latency for each hardware configuration to comprehensively
analyze the performance of the real-time system. This allowed
us to compare the inference performance across CPU, GPU,
and NPU environments, providing a quantitative understand-
ing of the performance differences between the hardware
components.

4.2 Evaluation

This section evaluates the performance differences across var-
ious hardware configurations and provides a comprehensive
analysis of the throughput (FPS), latency, and accuracy for
each configuration. The performance comparison is summa-
rized in Table 2. The CPU and GPU configurations showed
similar throughput, with 11.14 FPS and 11.17 FPS, respec-
tively, but differed in terms of latency. The CPU recorded a
latency of 99.73 ms, whereas the GPU had a higher latency
of 128.22 ms. This discrepancy is likely due to the memory
transfer and computational overhead associated with the GPU.
The accuracy (mAP) was identical for both configurations,
with a score of 31.4 mAP.

When using the NPU, the performance in the single buffer-
ing (SB) configuration shows that preprocessing takes 7.15ms,
inference takes 25.76ms, and postprocessing takes 8.05ms,
resulting in a total processing time of 40.96ms. Based on this,
the calculated FPS is 24.41, which represents approximately
2.13 times the performance improvement compared to using
the CPU alone. In the case of double buffering (DB), since
each stage is processed in parallel, the overall processing time
is determined by the longest stage, which is the inference time
of 25.76ms. Therefore, the calculated FPS is 38.79, which
is close to the actual measured value of 38.38 FPS. This
indicates that double buffering improves throughput by ap-
proximately 3.35 times compared to CPU-only usage, and by
1.58 times compared to single buffering. In terms of latency,
the measured latency for double buffering is 37.77ms, which
shows little difference from the 38.34ms observed in single
buffering. This demonstrates that double buffering increases
throughput without significantly increasing latency.

In a multi-NPU environment, we conducted experiments
using two NPUs and optimized data distribution through a

queue-based processing method. As a result, the through-
put increased to 55.04 FPS. However, the improvement was
sublinear, indicating that the CPU’s preprocessing and post-
processing tasks became bottlenecks. Analysis showed that
approximately 63% of the total workload is parallelizable,
primarily corresponding to the inference stage. Applying Am-
dahl’s Law [12], which relates the proportion of parallelizable
tasks to overall performance improvement, we calculated the
theoretical speedup using the formula § = m, where
P =0.63 and N = 2. Substituting these values, we obtain a
speedup of 1.46. Therefore, the expected FPS is 56.03, which
closely matches the actual measured value of 55.04 FPS. This
demonstrates that even with multiple NPUs, performance im-
provement is limited by the non-parallelizable portions of the
workload and CPU resource constraints.

The accuracy difference between hardware configurations
was minimal, with both the CPU and GPU recording 31.4
mAP, and the NPU slightly higher at 31.8 mAP. This small
variation may be attributed to differences in how quantized
models are executed across hardware [13]. Notably, the NPU
maintained model accuracy while improving processing speed
and reducing latency.

Table 2: Performance comparison across different hardware
configurations. SB and DB denote Single Buffering and Dou-
ble Buffering, respectively.

Throughput Latency Accuracy
HW Config. " ppy) (ms) (mAP)
CPU 11.14 99.73 31.4
GPU 11.17 128.22 31.4
NPU (SB) 24.41 38.34 31.8
NPU (DB) 38.38 37.77 31.8
NPUx2 (DB) 55.04 81.88 31.8

5 Conclusion

In this paper, we propose two approaches to optimize the
performance of a real-time object detection system utilizing
the Neubla Antara NPU. First, by employing double buffer-
ing, the CPU performs preprocessing in advance, ensuring
continuity in NPU inference. Second, in a multi-NPU en-
vironment, a queue-based processing scheme is introduced
to distribute tasks across NPUs, and the performance lim-
its are analyzed using Amdahl’s Law. Experimental results
show that, compared to the CPU-only system, the through-
put increased by 2.13 times with single buffering, 3.35 times
with double buffering, and 4.81 times in the multi-NPU envi-
ronment. Latency was reduced by 1.6 times with single and
double buffering, and by 1.18 times in the multi-NPU setup.
Accuracy remained consistent, with 31.4 mAP on the CPU
and 31.8 mAP on the NPU.

Acknowledgments

This work was supported by the Institute of Information &
Communications Technology Planning & Evaluation(II'TP)
grant funded by the Korea government(MSIT) (No.RS-2024-
00459797, Development of ML compiler framework for on-
device Al) and (No.RS-2023-00277060, Development of open
edge AI SoC hardware and software platform).

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Xiongwei Wu, Doyen Sahoo, and Steven CH Hoi. Re-
cent advances in deep learning for object detection. Neu-
rocomputing, 396:39-64, 2020.

Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo,
and Jieping Ye. Object detection in 20 years: A survey.
Proceedings of the IEEE, 111(3):257-276, 2023.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S
Emer. Efficient processing of deep neural networks:
A tutorial and survey. Proceedings of the IEEE,
105(12):2295-2329, 2017.

Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing
unit. In Proceedings of the 44th annual international
symposium on computer architecture, pages 1-12, 2017.

Stefano Markidis, Steven Wei Der Chien, Erwin Laure,
Ivy Bo Peng, and Jeffrey S Vetter. Nvidia tensor core
programmability, performance & precision. In 2018
IEEE international parallel and distributed process-
ing symposium workshops (IPDPSW), pages 522-531.
IEEE, 2018.

Brian Hickmann, Jieasheng Chen, Michael Rotzin, An-
drew Yang, Maciej Urbanski, and Sasikanth Avancha.
Intel nervana neural network processor-t (nnp-t) fused
floating point many-term dot product. In 2020 IEEE
27th Symposium on Computer Arithmetic (ARITH),
pages 133-136. IEEE, 2020.

Kyuho J Lee. Architecture of neural processing unit
for deep neural networks. In Advances in Computers,
volume 122, pages 217-245. Elsevier, 2021.

Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and
Tianqgi Tang. A survey of accelerator architectures for
deep neural networks. Engineering, 6(3):264-274, 2020.

Hyeryeong Kang. Hanwha establishes semiconductor
company neubla... advancing in system semiconductors.
https://www.sedaily.com/NewsView/26250GNIMYV,
2022.

[10]

(11]

(12]

[13]

Mohammed A Noaman Al-hayanni, Fei Xia, Ashur
Rafiev, Alexander Romanovsky, Rishad Shafik, and Alex
Yakovlev. Amdahl’s law in the context of heterogeneous
many-core systems—a survey. IET Computers & Digital
Techniques, 14(4):133-148, 2020.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar, and
C Lawrence Zitnick. Microsoft coco: Common objects
in context. In Computer Vision—-ECCV 2014: 13th Euro-
pean Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part V 13, pages 740-755. Springer,
2014.

Mark D Hill and Michael R Marty. Amdahl’s law in the
multicore era. Computer, 41(7):33-38, 2008.

Raghuraman Krishnamoorthi. Quantizing deep convo-
lutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018.

	Introduction
	Architecture and Execution Flow of Antara NPU
	Best Practices for Efficient Object Detection on Antara NPU
	Experiment
	Environment Setup
	Evaluation

	Conclusion

